刘遵雄,盛亚雄.权重分离性约束的Mean-CVaR投资组合模型[J].井冈山大学自然版,2017,(3):19-24,29 |
权重分离性约束的Mean-CVaR投资组合模型 |
MEAN-CVAR PORTFOLIO MODEL WITH WEIGHT SEPARATION CONSTRAINTS |
投稿时间:2016-07-01 修订日期:2016-10-16 |
DOI:10.3969/j.issn.1674-8085.2017.03.004 |
中文关键词: Conditional Value at Risk 投资组合 Mean-CVaR |
英文关键词: Conditional Value at Risk portfolio Mean-CVaR |
基金项目:国家自然科学基金项目(71361009) |
|
摘要点击次数: 1967 |
全文下载次数: 2660 |
中文摘要: |
不同于均值-方差(Mean-Variance)模型,均值-条件风险价值(Mean-Conditional Value at Risk,Mean-CVaR)模型不是以投资组合收益的方差作为风险测度,而是使用了能表征投资收益下侧尾部风险的条件风险价值。同样,Mean-CVaR模型存在优化解微权值数目过多的问题,造成操作性下降。针对这些问题,提出了在Mean-CVaR模型引入权值分离性约束,以保证投资权值不低于某一设定的阈值,结合上证50指数股票进行实例分析。 |
英文摘要: |
Different from the Mean-Variance, the Mean-CVaR (Mean-Conditional value at risk) model didn't take the variance of the portfolio returns as a measure of risk. However, it uses the conditional value at risk that express the underside of the tail risk of the investment income. Similarly, the optimal solution of Mean-CVaR problem has a lot of micro weight, which results in the decline of operating. The constraint of weight separation is proposed in this paper into the mean-CVaR model, which can ensures that the value of investment weight is not less than a set threshold. Combined with the SSE 50 index stock, we carry on the example analysis. |
查看全文
查看/发表评论 下载PDF阅读器 |
关闭 |