文章摘要
陈征艳,张家锋.一类具有陡峭位势临界的分数阶Schrödinger-Poisson系统的基态解[J].井冈山大学自然版,2024,45(6):27-35
一类具有陡峭位势临界的分数阶Schrödinger-Poisson系统的基态解
GROUND STATE SOLUTIONS FOR A CLASS OF CRITICAL FRACTIONAL SCHRÖDINGER-POISSON SYSTEM WITH STEEP POTENTIAL WELL
投稿时间:2024-06-10  修订日期:2024-07-20
DOI:10.3969/j.issn.1674-8085.2024.06.005
中文关键词: 基态解  变分方法  临界增长  陡峭位势  分数阶Schrödinger-Poisson系统
英文关键词: ground state solutions  variational methods  critical growth  steep potential well  fractional Schrödinger-Poisson system
基金项目:国家自然科学基金项目(11861021);贵州省教育厅自然科学研究项目(QJJ2023012,QJJ2023061,QJJ2023062);贵州民族大学自然科学研究项目(GZMUZK[2022]YB06).
作者单位E-mail
陈征艳 贵州民族大学数据科学与信息工程学院, 贵州, 贵阳 550025  
张家锋 贵州民族大学数据科学与信息工程学院, 贵州, 贵阳 550025 jiafengzhang@163.com 
摘要点击次数: 81
全文下载次数: 114
中文摘要:
      研究了一类具有陡峭位势的临界分数阶Schrödinger-Poisson系统。由于能量泛函的最小值大于零,这使得变分法难以运用和实现,为克服这个困难,构造了Pohozaev型等式和Nehari-Pohozaev-Palais-Smale序列。对非线性项f和参数作适当的假设,通过变分方法,得到了基态解的存在性。
英文摘要:
      In this paper we study the ground state solutions for a class of critical fractional Schrödinger-Poisson system. Since the minimum value of the energy functional is greater than zero, which can not be easily obtained by variational method, thus, the Pohozaev type identity and the Nehari-Pohozaev-Palais-Smale sequence are constructed to overcome this difficulty. Under suitable assumptions for nonlinear terms f and parameters, by the variational methods, the existence of the ground states solutions is obtained.
查看全文   查看/发表评论  下载PDF阅读器
关闭