文章摘要
高丽.两类高次不定方程正整数解的讨论[J].井冈山大学自然版,2024,45(6):23-26,42
两类高次不定方程正整数解的讨论
A DISCUSSION ON POSITIVE INTEGER SOLUTIONS TO TWO TYPES OF HIGH-ORDER INDEFINITE EQUATIONS
投稿时间:2021-04-13  修订日期:2024-06-11
DOI:10.3969/j.issn.1674-8085.2024.06.004
中文关键词: 不定方程  正整数解  整除  同余  Pell方程  勒让德符号
英文关键词: indefinite equation  positive integer solution  integer division  congruence  pell equation  Legendre symbol
基金项目:国家自然科学基金项目(62261055);陕西省教育科学“十二五”规划项目(SGH22Y1334)
作者单位E-mail
高丽 西安翻译学院信息工程学院, 陕西, 西安 710105 yadxgl@163.com 
摘要点击次数: 70
全文下载次数: 96
中文摘要:
      本研究讨论了两类典型的高次不定方程求解问题,首先利用整除的性质、不定方程组求解等方法,对不定方程Mx(x+1)(x+2)(x+3)= Ny(y+1)(y+2)(y+3), 在M=52k,N=1时的正整数解进行研究,证明了这个不定方程不存在正整数解;其次利用递归序列、同余、Pell方程解的性质、勒让德符号等方法证明了不定方程x3 ±1=Dy2D=1547时的情形,不定方程x3-1=1547y2仅有平凡整数解(1,0);不定方程x3+1=1547y2仅有平凡整数解(-1,0)。
英文摘要:
      Indefinite equation is one of the important contents of number theory, In this paper, the solution of two kinds of typical high order indefinite equations was discussed. First, by using the property of division, the solution of the indefinite equation, etc., the positive integer solution of Mx(x+1)(x+2)(x+3)= Ny(y+1)(y+2)(y+3), was studied at the condition of M=52k,N=1, it is proved that there is no positive integer solution to this indefinite equation. Secondly, by using elementary methods such as recursive sequences, congruences, properties of solutions to the Pell equation, and Legendre symbols, it has been proven that an indefinite equation x3 -1=1547y2 only has trivial integer solutions (1, 0) the indefinite equationx3 +1=1547y2 only has trivial integer solutions (-1, 0) when D=1547 for the indefinite equation x3±1=Dy2.
查看全文   查看/发表评论  下载PDF阅读器
关闭