朱先阳.二阶脉冲时滞双曲型方程的振动性[J].井冈山大学自然版,2024,45(6):17-22 |
二阶脉冲时滞双曲型方程的振动性 |
OSCILLATION OF SECOND-ORDER IMPULSIVE DELAY HYPERBOLIC EQUATIONS |
投稿时间:2024-05-30 修订日期:2024-06-21 |
DOI:10.3969/j.issn.1674-8085.2024.06.003 |
中文关键词: 脉冲双曲型系统 振动 中立型 边值条件 |
英文关键词: impulsive hyperbolic systems oscillation neutral type boundary value condition |
基金项目:国家自然科学基金项目(11161024);铜仁学院博士科研启动基金项目(trxyDH2220);铜市科研[2023]42号 |
|
摘要点击次数: 65 |
全文下载次数: 106 |
中文摘要: |
脉冲时滞微分方程描述系统在不同时间点上受到不同力的作用,包括来自历史状态(时滞项)和突发事件(脉冲激励),这种系统与现实相接近,在各方面均有着广泛的应用。本研究利用微分不等式和特征值方法,分别在三类边值条件下,得到了二阶中立型脉冲时滞双曲型方程振动性的充分条件。 |
英文摘要: |
Impulsive delay differential equation describes a system that is subject to different forces at different points in time, including from historical states (time-delay terms) and sudden events (impulsive excitation), it has a wide range of applications. In this paper, some sufficient conditions for oscillation of second-order impulsive delay hyperbolic equations of neutral type are obtained by using differential inequalities and eigenvalue methods under three boundary conditions, respectively. |
查看全文
查看/发表评论 下载PDF阅读器 |
关闭 |