刘文一,胡继文,刘亚涛,雷卫瑞,陈学坤.超声场中振荡微泡对血管壁的生物力学效应[J].井冈山大学自然版,2021,42(1):14-19 |
超声场中振荡微泡对血管壁的生物力学效应 |
BIOMECHANICAL EFFECTS ON BLOOD VESSEL WALL PRODUCED BY OSCILLATING MICROBUBBLE IN ULTRASOUND FIELD |
投稿时间:2020-10-09 修订日期:2020-11-17 |
DOI:10.3969/j.issn.1674-8085.2021.01.003 |
中文关键词: 超声 微泡 微血管 应力 有限元法质 |
英文关键词: ultrasound microbubble microvascular stress finite element method |
基金项目:国家自然科学基金项目(11747121,11904161),湖南省教育厅重点科研项目(14A127) |
作者 | 单位 | 刘文一 | 南华大学数理学院, 湖南, 衡阳 421001 | 胡继文 | 南华大学数理学院, 湖南, 衡阳 421001 | 刘亚涛 | 南华大学数理学院, 湖南, 衡阳 421001 | 雷卫瑞 | 南华大学数理学院, 湖南, 衡阳 421001 | 陈学坤 | 南华大学数理学院, 湖南, 衡阳 421001 |
|
摘要点击次数: 6278 |
全文下载次数: 11487 |
中文摘要: |
血管内受束微泡振荡所产生的生物力学效应在靶向药物传递、开放血脑屏障等具有重要的医学应用。本文从生物力学角度,创建了一个气泡-流体-固体耦合动力学模型,利用有限元法,研究超声场中振荡微泡与血管壁的相互作用,得到不同超声频率、血管尺度及不同初始半径微泡对血管壁的应力及应变分布。结果表明: 频率1.0~1.5MHz时,血管壁应力随频率增大而降低;1.5~2.0MHz时,应力随频率经历半个正弦波形的变化,2.0 MHz之后不同初始半径微泡对血管壁的应力趋向一个相等的稳定值;当频率和初始微泡确定时,血管壁应力随血管半径先增大后变小,血管越厚,其应力和振动幅值都相应变小。三种不同初始半径微泡在不同血管半径中能产生有相应的应力极大值,其中较小初始半径微泡应力最大。本模型可用于计算不同声参数、血管尺度及不同初始微泡半径时的生物力学效应,为血管损伤评估提供参考。 |
英文摘要: |
The biomechanical effects produced by oscillating microbubbles confined in blood vessel play an important role in medical applications such as targeted drug delivery, blood-brain barrier opening etc. Based on the biomechanical mechanism, a bubble-fluid-solid coupling model was constructed. The interaction between a microbubble and vessel wall was investigated by finite element method. We calculated the stress distribution of the vessel wall produced by oscillating microbubble at different parameters. The results showed that the stress of wall decreased with increasing of frequency from 1.0 to 1.5 MHz. There was a shape of a half sine wave as the frequency changes from 1.5 to 2.0 MHz. The stresses tended to reach a stable value after 2.0 MHz, when the frequency and initial micro vesicles were determined, the stress showed a trend of first increase and then decrease with the radius of microvascular. The thicker the vessel, the smaller the stress and deformation got. Microbubbles with three different initial radii could produce corresponding maximum stress in different vessel radii, and the microbubbles with smaller initial radii had the largest stress. The model can be used to calculate the biomechanical effects at different acoustic parameters, vessel sizes and initial microbubble radii, which provides reference for vascular injury assessment. |
查看全文
查看/发表评论 下载PDF阅读器 |
关闭 |
|
|
|