王菊香,唐淼.P元周期倒序广义对偶多维序列的复杂性分析[J].井冈山大学自然版,2017,(6):43-47 |
P元周期倒序广义对偶多维序列的复杂性分析 |
THE ANALYSIS OF COMPLEXITY OF PERIODIC INVERTED GENERALIZED BIT-WISE NEGATIVE MULTI-SEQUENCES OVER FP |
投稿时间:2017-08-13 修订日期:2017-10-15 |
DOI:10.3969/j.issn.1674-8085.2017.06.010 |
中文关键词: 联合线性复杂度 对偶序列 周期倒序序列 流密码 |
英文关键词: joint linear complexity bit-wise negative sequences periodic inverted sequences stream ciphers |
基金项目:安徽省教育厅自然科学基金一般项目(KJ2015JD18);安徽省高校优秀青年人才支持计划基金重点项目(gxyqZD2016032);安徽省高校自然科学研究项目重点项目(KJ2017A136) |
|
摘要点击次数: 1935 |
全文下载次数: 2456 |
中文摘要: |
线性复杂度是度量密钥流序列的重要指标。在P元周期倒序单序列的对偶序列极小多项式性质的基础上,讨论了P元周期倒序广义对偶多维序列的极小多项式的性质,并明确给出P元周期倒序广义对偶多维序列与原多维序列之间的联合线性复杂度的关系式。这些结果很好地推动了密钥流多维序列的联合线性复杂度研究的发展。 |
英文摘要: |
On base of the conclusion of periodic inverted generalized bit-wise negative sequences, the discussion of the minimum generate polynomials of binary periodic inverted generalized bit-wise negative multi sequences was presented over FP. The relation between binary periodic inverted generalized bit-wise negative multi-sequences and original periodic multi-sequences was pointed out. The results presented can be used to analyze the joint complexity of periodic multi sequences of stream ciphers. |
查看全文
查看/发表评论 下载PDF阅读器 |
关闭 |