文章摘要
陈凯丽,易剑峰,孙兰,孙文,翟文静.雷公藤多苷对白芍总苷在正常大鼠体内药代动力学的影响[J].井冈山大学自然版,2017,(1):88-92,106
雷公藤多苷对白芍总苷在正常大鼠体内药代动力学的影响
EFFECT OF TRIPTERYGIUM GLYCOSIDES ON PHARMACOKINETICS OF TOTAL GLUCOSIDES OF PAEONY IN RATS IN VIVO
投稿时间:2016-11-17  修订日期:2016-12-28
DOI:10.3969/j.issn.1674-8085.2017.01.017
中文关键词: 雷公藤多苷  白芍总苷  雷公藤甲素  芍药苷  SD大鼠
英文关键词: TPG  TGP  TP  Paeoniflorin  SD rats
基金项目:国家自然科学基金项目(81060355)
作者单位E-mail
陈凯丽 宜春学院化学与生物工程学院, 江西, 宜春 336000  
易剑峰* 宜春学院化学与生物工程学院, 江西, 宜春 336000 rainbowyjf@126.com 
孙兰 宜春学院化学与生物工程学院, 江西, 宜春 336000  
孙文 宜春学院化学与生物工程学院, 江西, 宜春 336000  
翟文静 宜春学院化学与生物工程学院, 江西, 宜春 336000  
摘要点击次数: 10292
全文下载次数: 18981
中文摘要:
      目的 研究雷公藤甲素对芍药苷在SD大鼠体内药动学特征的影响,为临床上合理联合用药提供参考依据。方法 选取雄性SD大鼠分为3组,每组6只,分别灌胃生理盐水、白芍总苷混悬液和白芍总苷加雷公藤多苷混悬液,于不同的时间点从大鼠眼眶静脉丛采血,采用高氯酸(28%)蛋白沉淀法处理血浆样品,用HPLC法进行分析,数据采用DAS2.0软件处理并分析。色谱条件为:Agilent Eclipse XDB-C18柱、柱温30℃、流动相乙腈-水(0.05%甲酸)(16:84)、流速0.7 mL·min-1、进样量15 μL、检测波长234 nm。结果 白芍总苷联用雷公藤多苷后血浆中芍药苷的药动学参数为:AUC(0-7)=(35.812±2.74)μg·mL-1·h,AUC (0-∞)=(42.917±6.275)μg·mL-1·h,MRT(0-7)=(3.469±0.22)h,Tmax=(2.917±1.686)h,Cmax=(7.741±0.406)μg·mL-1,CL:F=(40.203±4.875)mL·h-1·kg-1。与白芍总苷组比较,Cmax、AUC (0-7)、AUMC (0-∞)均显著增加,Tmax、MRT (0-7)显著延长。结论 白芍总苷配伍雷公藤多苷使用后,可促进白芍总苷的吸收,减慢白芍总苷在大鼠体内的代谢;雷公藤甲素会影响大鼠体内芍药苷的药动学行为。
英文摘要:
      Objective: To explore the effect of tripterygium glycosides (TPG) on the pharmacokinetics of total glucosides of paeony (TGP) in rats in vivo, and to provide basis for clinical co-TGP-TPG safe and reasonable application. Methods: It is established by using HPLC method for determination of drug plasma concentration of paeoniflorin (Pae) in rat, in order to research the effect of the main active ingredient triptolide (TP) of TPG on pharmacokinetics of the main active components Pae of TGP. SD rats were separated into three groups (6 in each): normal control were treated with physiological saline, TGP and co-TGP-TPG groups treated with TGP tablets suspension and co-TGP tablets-TPG via oral administration, respectively. Blood was collected from venous plexus of eye socket in heparinized tubes at different time after administration. The plasma sample was mixed with Perchlorate (28%) and then protein precipitation, the supernatant was injected into the HPLC system. The establishing HPLC method is rapid, accurate and sensitive, and it can be used for the determination of Pae in rat plasma. The optimum condition was as follows: Agilent Eclipse XDB-C18 column, column temperature of 30℃, mobile phase of acetonitrile/formic acid-water(16/84, v/v%), flow rate of 0.7 mL·min-1, injection volume of 15 μL and the detected wavelength of 234 nm. Results: The main pharmacokinetics of Pae in the co-TGP-TPG groups: AUC(0-7)=35.812±2.74 μg·mL-1·h, AUC(0-∞)=42.917±6.275 μg·mL-1·h, MRT(0-7)=3.469±0.22 h, Tmax2.917 ±1.686 h, Cmax=7.741±0.406 μg·mL-1, CL:F=40.203±4.875 mL·h-1·kg-1. Compared with TGP group, parameters of the co-TGP-TPG group Cmax, AUMC(0-7),AUMC(0-∞) were significantly increased, Tmax, MRT(0-7) was obviously prolonged (P<0.05). Conclusion: TPG can enhance the absorption of TGP in normal rats, slow down the metabolism of TGP; and TP can affect the pharmacokinetic behaviour of Pae in vivo.
查看全文   查看/发表评论  下载PDF阅读器
关闭