陈松良,蒋启燕,崔忠伟.一类有可换Sylow 2-子群的8p3阶群的完全分类[J].井冈山大学自然版,2015,(4):1-6 |
一类有可换Sylow 2-子群的8p3阶群的完全分类 |
ON THE COMPLETE CLASSIFICATION OF A KIND OF THE FINITE GROUPS OF ORDER 8P3 WITH ABELIAN SYLOW 2-SUBGROUPS |
投稿时间:2015-05-06 修订日期:2015-05-28 |
DOI:10.3969/j.issn.1674-8085.2015.04.001 |
中文关键词: 有限群 同构分类 群的构造 |
英文关键词: finite group isomorphic classification structure of group |
基金项目:贵州省科学技术基金项目(黔科合J字[2013]2234号),贵州省教育厅教改项目(黔教高发[2013]446号) |
|
摘要点击次数: 2309 |
全文下载次数: 3089 |
中文摘要: |
设 p为奇素数(p≠3,7),G是Sylow 2-子群是型为(22,2)的8阶交换群C4×C2的8p3 阶群,利用群在群上的作用理论,对群G进行了完全分类并确定了它的全部构造,即:1)当p≡1(mod 4)时,G恰有74个彼此不同构的类型;2)当p≡3(mod 4)时,G恰有40个彼此不同构的类型。 |
英文摘要: |
Let p be an odd prime and G be groups of order 8p3 with Abelian Sylow 2-subgroup C4×C2. Based on the theory of groups acting on groups, we discuss that the isomorphic classification of G. Their structures are completely determined. We also show that: 1) If p≡1 (mod 4), G has 74 nonisomorphic structures; 2) If p≡3 (mod 4), G has 40 nonisomorphic structures. |
查看全文
查看/发表评论 下载PDF阅读器 |
关闭 |
|
|
|